228 research outputs found

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    COMPARING PRICE MOVEMENTS OF OPTIONS AND THE UNDERLYING INDEX

    Get PDF
    In theory, a call option and its underlying index should move in the same direction, while a put option and its underlying index should move in opposite directions. This property is referred to as the Empirical Monotonicity Property (EMP) when applied to time series of prices. In this paper, we use daily call and put options? data to conduct empirical tests of the EMP, including three violation types. Further, we investigate the effect of grouping the option prices by their Black-Scholes implied volatility and by moneyness, and also the effect of using different quotes (bid, offer, and bid-offer midpoint). In addition to EMP, which depends on the signs of the price changes, we also test another theoretical constraint concerning the magnitude of these changes. This is followed by a discussion of the possible causes for violations of the EMP. We use regression analysis to test whether volatility changes may be one of these causes. Lastly, we summarize the implications of our study to hedging strategies

    DATE: Dual Assignment for End-to-End Fully Convolutional Object Detection

    Full text link
    Fully convolutional detectors discard the one-to-many assignment and adopt a one-to-one assigning strategy to achieve end-to-end detection but suffer from the slow convergence issue. In this paper, we revisit these two assignment methods and find that bringing one-to-many assignment back to end-to-end fully convolutional detectors helps with model convergence. Based on this observation, we propose {\em \textbf{D}ual \textbf{A}ssignment} for end-to-end fully convolutional de\textbf{TE}ction (DATE). Our method constructs two branches with one-to-many and one-to-one assignment during training and speeds up the convergence of the one-to-one assignment branch by providing more supervision signals. DATE only uses the branch with the one-to-one matching strategy for model inference, which doesn't bring inference overhead. Experimental results show that Dual Assignment gives nontrivial improvements and speeds up model convergence upon OneNet and DeFCN. Code: https://github.com/YiqunChen1999/date

    Simulation of the effect of stand-off parameter on collapse behaviours of a single cavitation bubble in jet drilling

    Get PDF
    Cavitation jet drilling has been extensively employed for the exploitation of geo-energy resources. The dynamics of cavitation bubbles in close proximity to the solid boundary have been a subject of great interest during jet drilling, as they play a crucial role in determining the cavitation performance. In present work, the dynamics of a single cavitation bubble near a solid surface is numerically investigated by using the axisymmetric Navier-Stokes equations and the volume of fluid method with considering the surface tension of gas-liquid interface, liquid viscosity and compressibility of gas in bubble. The simulated profiles are qualitatively and quantitatively consistent with the experimental images, which proves the reliability of employed numerical model. The effects of stand-off distance on the bubble profiles, bubble volume and collapse time have been analysed. Moreover, the cavitation erosion patterns towards the solid wall are also revealed for different dimensionless standoff distances. The simulation results reveal two distinct collapse patterns for the bubble profiles. The solid wall significantly impedes the shrinkage rate of the bubble, resulting in the longest collapse time when the dimensionless stand-off distance is 1.0. Three erosion patterns of cavitation bubbles towards the solid wall are observed, with the shock wave and micro-jet both contributing significantly to the damage caused by cavitation erosion. The shock wave sweeps the wall resulting in circular corrosion pits with a severely eroded centre, while the micro jet penetrates the wall leading to small spot corrosion pits.Document Type: Original articleCited as: Wu, X., Zhang, Y., Huang, H., Hui, C., Hu, Z., Li, G. Simulation of the effect of stand-off parameter on collapse behaviours of a single cavitation bubble in jet drilling. Advances in Geo-Energy Research, 2023, 8(3): 181-192. https://doi.org/10.46690/ager.2023.06.0
    corecore